【书评】阿里巴巴车品觉:11个维度解读大数据
本文摘要:阿里巴巴集团副总裁、数据委员会会长车品觉在新书《决战大数据》中回忆到:2005年,淘宝有了第一个数据分析师,一直致力于用数据来协助企业运营宽和决问题。阿里巴巴在不断使用数据的同时,也发现了数据本身的问题——大数据需要更主动的管理,也需要更多的立

阿里巴巴集团副总裁、数据委员会会长车品觉在新书《决战大数据》中回忆到:2005年,淘宝有了第一个数据分析师,一直致力于用数据来协助企业运营宽和决问题。阿里巴巴在不断使用数据的同时,也发现了数据本身的问题——大数据需要更主动的管理,也需要更多的立异。

数据化运营是用数据解决问题,但假如想把数据做得更好,解决更多新的问题,就需要去做一件曾经从未做过的新事情——运营数据。2011年,阿里巴巴才开始有方案地进行这件事。企业主动收集数据,并且以此去发明更优质的新数据,让新数据更好地效劳于企业的运营。这是一个“从用数据到养数据”的过程;是一个“从数据化运营到运营数据”的过程,也是一个“从看到真用”的过程。

全书分十一个章节,车品觉从数据化运营到运营数据、阿里巴巴的大数据隐秘两大角度、十一个维度,用鲜活的例子详细论述了其数据化考虑。以下是对一些精彩观念提炼。

1、大数据面对的最大问题——人

断层是大数据面对的最严峻问题。收集数据的人其实不清楚未来使用数据的人要做什么,这是现在大数据的一大要害命门。使用数据建模的人,相同不清楚其时数据是怎么取得的。

从公司管理层角度看,投资人了解数据的意义吗?高层管理者对数据的期望和中层管理者之间有不同吗?他们知道数据可以协助企业做什么吗?这些答案因态度而异。

当我们讲到数据价值时,没有人能对此给出一个合理的定位,原因就在于几个要害问题没有分清楚:一是要明确这是谁心里的数据价值,投资人、管理者、中层、数据分析师们心中对数据所发生的价值天然不同;二是要明确数据的分类,不同类型的数据所发生的价值各不相同。

2、大数据的本质是复原用户真实需求

每一个人都在通过不同的设备发生着数据,使数据更多在“量”这个维度上不断膨胀,可是“量”的单纯膨胀却对企业真正了解一个用户的需求发生了极大的应战。所以,怎么更好地辨认各个设备的使用者是否为同一个人,怎么更好地舆解用户在各个不同场景下体现出来的不同需求,怎么更好地舆解数据交融后发生的价值将是未来商业中每个企业有必要考虑的问题。

跟着O2O的深化和可穿戴设备的兴起,企业和企业之间有必要进行更多的数据交融和交换,有必要进行更多的跨行业数据交流,这样才干更好地复原用户的真实需求,让用户在任何一个场景中都能取得由数据带来的便当。

3、“活”的数据才是大数据

盲目进行大数据投资,收集愈来愈多的数据,但这些数据却是“死”数据。“死”数据就是单纯存在数据库中,无法进行分析和使用,并且不可以发生价值的数据。

大数据的真正价值是将数据用于构成主动收集数据的良性循环中,以带动更多的数据进入这个自循环中,并应用于各个行业。多样的自循环方式打开了大数据之门,进入这个循环的要害是从解决问题出发。

4、无线数据,大数据的颠覆者

面对无线数据,我们需要一种多屏思维——需要考虑到现在用户使用互联网的多场景问题。多屏可能会包括多台电脑、手机和pad,可穿戴式设备。当多屏变成一种常态,不论是数据分析师的分析方法仍是引荐体系的引荐算法都有必要多屏化。要解决的主要问题有两个:一是做到高效精确的收集,二是培育数据分析师的多屏思维。

5、四种数据分类与五种数据价值

数据依照是否可再生,分为不可再生和可再生数据。依照所处存储层次,可分基础层、中心层和应用层。依照数据事务归属,可分为各个数据主体。依照是否为隐私,可分为隐私数据和非隐私数据。

数据价值1、辨认与串联价值,2、描述价值,3、时间价值,4、猜测价值,5、产出的数据价值。

6、从用数据到养数据

“养数据”通常有两类,一类是网站本身没有的数据,需要用户自主提供;另外一类是公司具有的,但没有进行数据的收集。

“用数据”更多的是一种方法论,“养数据”则是一种数据战略,是基于深化事务了解的更高层次的商业决策,数据养的时间越早,堆集的数据也就越多。养数据也是一种管理和商业艺术,在养之前可能谁也不确定最终会呈现的成果,一旦养成会发生十分大的商业价值。

7、数据的盲点

数据盲点可以分为两类,物理盲点和逻辑盲点。物理盲点是指在数据库中不存在这样的数据,即企业没有收集到应该收集的数据,这一类数据问题的发生通常是数据收集策略出了问题。逻辑盲点是稀有据,但没有被很好地开掘出来。数据逻辑盲点的呈现与数据分析师或数据使用者的经历和敏感度有关。

除了这两种,还有一些人为制造的“盲点”,比如故意把数据进行掩盖,或者人为地调整数据口径。是否看到数据盲点价值的核心是有无看到应该看到的数据,有无错失不该该错失的数据。

8、阿里巴巴的大数据实验

一个人在注册某一个网站的时分,性别挂号只会是男性或者女性,阿里巴巴竟然有18个标签!阿里巴巴的内部数据化运营流程是:例如,要为一个童装类目做营销推广以征集新客户,会先找到方针客户群,把这个类目感爱好的消费者用标签找出来,通过发邮件或短信吸引其重视。

数据从“用”上升到“养”,即运营数据。例如,会尝试在整个淘宝中查找,针对12岁年纪之下儿童商品为例,此时在用户中查找有多少用户家中有12岁以下的孩子,但却未发生过从这个类目购买商品的行为。曾经只能运营有过购买行为的几百万用户,现在可以达到几千万。从几百万到几千万就是运营数据,这时候一个从主动收集数据到运营数据,再到发生新数据的过程。

9、阿里数据化运营的内三板斧——混、通、晒

作为数据分析师,假如不好事务部混在一同,商业敏感就不会随便呈现在你的面前。坚持带着事务问题来观察数据或者带着数据来观察事务,兼备二者的敏感,就做到“通”,更深层次的通是存在于公司组织中的数据。数据能不能做到在获取、使用、分享、协同、链接、组合之上让自己变得超级简略和便捷,这时候数据化运营里边十分重要的一点,正是晒的内容。

10、阿里运营数据的外三板斧——存、管、用

收集数据不是意图,让收集起来的数据怎么发生价值才是最终的意图。学会用数据产品来解决获取及使用数据的问题。阿里巴巴数据管理最不一样的当地在于十分依赖数据产品,期望用数据产品来解决获取以及使用数据的问题。在“用”数据的问题上,数据的割裂和重组,都能做到颠覆性立异。

11、大数据,未来商业利器

数据扮演的三个人物分别是:第一个阶段是从点上辅导运营;第二个阶段是数据从点到线或到面。第三个阶段为做数据模型,分析外围数据开始变得异常重要,可认为公司的下一步战略找到出路,数据真正能充当迸发人物的,一定是第三个阶段。

迸发,是做每一件事情宽和决每个企业问题的人都需要的,尤其是做数据的人,一定要每时每刻想到数据可以为企业发生什么价值,可以用数据解决什么问题,是否是可以用数据来发现企业中的迸发点。假如做数据的人时刻都有这样的一是,那企业将会因为数据取得十分大的收益。

via:IT value


人人都是产品主管(woshipm)是以产品主管、运营为核心的学习、交流、分享平台,集媒体、培训、社群为一体,全方位效劳产品人和运营人,建立9年举行在线讲座500+期,线下分享会300+场,产品主管大会、运营大会20+场,掩盖北上广深杭成都等15个城市,内行业有较高的影响力和知名度。平台集合了众多BAT美团京东滴滴360小米网易等知名互联网公司产品总监和运营总监,他们在这里与你一同生长。